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Abstract

▷ Understanding both Software Bill of Materials (SBOM) and Software 
Composition Analysis (SCA) is essential for Software Supply Chain 
Security

▷ FOSS tools avoid vendor lock-in and also enable upstream projects to 
apply SCA for  better supply chain security

▷ This presentation will cover:
▪ Using SCA to find and report software licenses and vulnerabilities
▪ Generating and consuming SBOMs with rapidly evolving regulatory 

and business requirements
▪ Overview of FOSS tools like nexB’s DejaCode, ScanCode and 

VulnerableCode to manage software supply chain risk
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Agenda

▷ Background on Software Bills of Materials

▷ Software Composition Analysis Process

▷ Using FOSS SCA tools to create and manage SBOM data

▷ Securing the Open Source Software Supply Chain

NB: The primary focus of this discussion is Free and Open Source Software (FOSS) but most points 
also apply to to Proprietary Software. And most modern Proprietary Software contains FOSS - usually 
in the range of 80% or  more depending on how you count.
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Why trust nexB?

▷ Recognized by major companies as:
○ Trusted experts in Software Composition Analysis
○ Developers of best-in-class SCA tools

▷ FOSS-first mission: FOSS for FOSS
○ Our tools for FOSS SCA are open source
○ Focused on supporting the FOSS ecosystem

▷ nexB team members are thought leaders
○ Creators of ScanCode: 

https://www.aboutcode.org/projects/scancode.html

○ Creators of package-url: https://github.com/package-url
○ Co-founders of SPDX: https://spdx.org
○ Co-founders of ClearlyDefined: https://clearlydefined.io
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Software Bill of Materials (SBOM)

o An SBOM is a list of software components used in a product
▪ Concepts borrowed from discrete manufacturing
▪ The list is typically a hierarchy (“graph”)
▪ What is a software component?  There is no standard terminology!
▪ A component may be a file (source or binary) or a package of files
▪ A package may be an archive with or without metadata

o Many possible SBOM use cases
▪ Packaged software
▪ Software deployed on a device
▪ Software deployed on the Cloud
▪ The Customer/recipient of an SBOM may be anywhere in the supply chain
▪ Anyone who distributes software in any way will need to produce SBOMs
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Why SBOMs

o An SBOM is a prerequisite for managing license and 

vulnerability risks from third-party software

o And for sharing that information across your supply chain

o Automation is essential to cope with the rapid and continuing 

increase in the volume of FOSS packages

o The entry point for managing these risks is agreeing 

somehow on the identification of the software units across a 

supply chain
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Why SBOMs [2]

o Providing an SBOM with your software is now a requirement 

for doing business with US government agencies
▪ The Cyber Supply Chain Management and Transparency Act of 2014 focused 

on vulnerabilities
▪ The May 2021 Executive Order on Improving the Nation’s Cybersecurity

added the broader concept of software supply chain
▪ CISA* currently has five weekly meetings on the topic!

o Modern software contains third-party software - FOSS or 

Proprietary - with potential licensing and vulnerability risks

o A better question: Why haven’t we been using SBOMs 

before?

* CISA: Cybersecurity and Infrastructure Security Agency within DHS

7

https://www.congress.gov/bill/113th-congress/house-bill/5793
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/


Copyright nexB Inc.

SBOM Standards

Two emerging standards for an SBOM:

1. CycloneDX - https://cyclonedx.org/ - from OWASP

2. SPDX - https://spdx.dev/ - from the Linux Foundation
■ One weaker candidate: SWID - https://csrc.nist.gov/projects/Software-Identification-

SWID

o Unlikely that there will be only one standard…

o And possible that there will be more than two. 

o Remember: These are standards for data exchange, not 

design standards for any particular software system
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SBOM Standards [2]

o Other standards will be required like Package URL to reliably 

identify a unit of software: https://github.com/package-url/purl-

spec

o Waiting for a complete and final specification is not a realistic 

option
▪ Best approach is to get started now 
▪ With an expectation that standards and tools will change
▪ Just like the rest of the software domain
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SBOMs for Software Supply Chain Security

o Software organizations can learn a lot from manufacturing 

best practices

o Each organization in a supply chain is responsible for 

knowing the origin and quality of the materials included in a 

product at their stage of production

o This requires knowing and sharing information in the format 

of SBOMs which means standardizing data and

learning to translate among multiple standards 
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Software Composition Analysis

SCA is a set of processes and tools that cover:

o Identification – Identify distinct “units” of third-party software 

used in a product or project and their provenance

o Licensing – Determine the licensing for each software unit

o Security – Identify known security vulnerabilities for each 

software unit

o Quality – Evaluate the quality of a software unit based on 

software development data, such as number of bugs, fixes, 

etc.

Read SCA the FOSS Way for more information
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Software Composition Analysis [2]

o Overall SCA needs to be a core competency for ay software 

development organization

o Embed in the software development workflow from design 

through release - as it is in manufacturing

o The choice of SCA tools will depend on your platform, stack 

and product
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SCA Tools

o Primary focus of SCA tools has been on security 

vulnerabilities because of the perceived higher risk

o Most SCA tools focus on either vulnerabilities OR licensing

o Vulnerabilities and licenses seem like oil and water
▪ The communities of interest are separate - security vs legal
▪ License data may be complex, but generally stable over time
▪ Vulnerability data is also complex, but extremely dynamic - if included directly 

in an SBOM, it may be wrong by the time you receive an SBOM

o But you need SCA coverage for both - plus quality

13



Copyright nexB Inc.

SCA Tools [2]

o Most current tools are proprietary and increasingly expensive 

with the surge of interest in SBOMs
▪ Trend seems to be charging based on the total number of 

developers in your organization
▪ Good for the vendor - not for the customer

o Proprietary solutions may work for large companies, but they 

will not work across the FOSS supply chain
▪ Proprietary data about FOSS vulnerabilities is particularly 

problematic as a barrier to community access and analysis

14



Copyright nexB Inc.

FOSS tools for SCA

o Modular tools for developers:
▪ Free and open source software (Apache 2.0)
▪ Free and open data (CC-BY-SA)

o ScanCode: Leading code scanner

o VulnerableCode: New tools and database for aggregating 

vulnerability data from across the FOSS supply chain

o PurlDB: New tools and database for aggregating package 

data across the FOSS supply chain 

o DejaCode: SCA management application
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DejaCode
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DejaCode

▷ Compliance application / system of record for:
○ Managing Inventory and BOM data
○ Defining and applying license policies
○ Identifying and addressing package vulnerabilities
○ Generating FOSS compliance documents such as Product 

Attribution Notices and SBOMs

▷ Built-in integration with ScanCode.io, VulnerableCode.io and 

PurlDB

▷ SaaS or on-premises

▷ See https://nexb.com/dejacode/
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ScanCode

▷ Identify FOSS and other third-party components & packages
▷ Detect licenses, copyrights and dependencies
▷ ScanCode Projects include:

○ ScanCode.io: Server system with customizable pipelines and UI
○ ScanCode Toolkit:  Scanning engine - use it in SCIO or as a 

separate CLI or library
○ LicenseDB:  2000+ licenses recognized by ScanCode
○ ScanCode Workbench: Desktop app to review Toolkit Scans 
○ scancode-analyzer: Analyze and improve license detection accuracy

▷ See https://nexb.com/scancode/ for more information
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VulnerableCode

▷ Collect and aggregate vulnerability data from many public sources
○ Projects, GitHub, Linux Distros, NVD, Package managers and more 
○ Focus on upstream projects (source of the source)

▷ Apply confidence based system: not all data are equally trusted and of 
equivalent quality

▷ Discover relations (and inconsistencies) between vulnerabilities and 
packages from mining the graph

▷ Public VulnerableCode database is available at: 
https://public.vulnerablecode.io/
▷ Also tools to build your own database 
▷ Working on data sharing and curation

▷ See https://nexb.com/vulnerablecode/ for more information
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PurlDB

▷ Collect and aggregate package metadata from many public sources
○ Package manager repositories
○ GitHub, GitLab and other source repositories
○ Linux distros
○ Focus on upstream projects (source of the source)

▷ Will support package matching as a complement to scanning
▷ Also tools to build your own database 
▷ See https://github.com/nexB/purldb/ for more information
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Other AboutCode projects

▷ container-inspector: Analyze Docker and other images
▷ debian-inspector: Parse Debian copyright files
▷ nuget-inspector: Resolve C# dependencies
▷ python-inspector: Resolve Python dependencies
▷ aboutcode-toolkit: Generate Attribution Notices
▷ package-url (purl): URL string to identify and locate a software 

package across programing languages, package managers, packaging 
conventions, tools, APIs and databases.
○ Adopted by ORT, CycloneDX and many other major projects
○ See also https://github.com/package-url

○ univers: parse and compare package versions and version ranges
○ See https://github.com/nexB for the complete list of projects
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Contact us

▷ Contacts
○ Michael Herzog

mjherzog@nexb.com

○ Philippe Ombredanne
pombredanne@nexb.com

○ Dennis Clark

dmclark@nexb.com

▷ More information - https://www.nexb.com/
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