
Copyright nexB Inc.

Securing Open Source Supply Chains:

FOSS for FOSS

Copyright nexB Inc.

Abstract

▷ Understanding both Software Bill of Materials (SBOM) and Software
Composition Analysis (SCA) is essential for Software Supply Chain
Security

▷ FOSS tools avoid vendor lock-in and also enable upstream projects to
apply SCA for better supply chain security

▷ This presentation will cover:
▪ Using SCA to find and report software licenses and vulnerabilities
▪ Generating and consuming SBOMs with rapidly evolving regulatory

and business requirements
▪ Overview of FOSS tools like nexB’s DejaCode, ScanCode and

VulnerableCode to manage software supply chain risk

2

Copyright nexB Inc.

Agenda

▷ Background on Software Bills of Materials

▷ Software Composition Analysis Process

▷ Using FOSS SCA tools to create and manage SBOM data

▷ Securing the Open Source Software Supply Chain

NB: The primary focus of this discussion is Free and Open Source Software (FOSS) but most points
also apply to to Proprietary Software. And most modern Proprietary Software contains FOSS - usually
in the range of 80% or more depending on how you count.

3

Copyright nexB Inc.

Why trust nexB?

▷ Recognized by major companies as:
○ Trusted experts in Software Composition Analysis
○ Developers of best-in-class SCA tools

▷ FOSS-first mission: FOSS for FOSS
○ Our tools for FOSS SCA are open source
○ Focused on supporting the FOSS ecosystem

▷ nexB team members are thought leaders
○ Creators of ScanCode:

https://www.aboutcode.org/projects/scancode.html

○ Creators of package-url: https://github.com/package-url
○ Co-founders of SPDX: https://spdx.org
○ Co-founders of ClearlyDefined: https://clearlydefined.io

4

https://www.aboutcode.org/projects/scancode.html
https://github.com/package-url
https://spdx.org
https://clearlydefined.io

Copyright nexB Inc.

Software Bill of Materials (SBOM)

o An SBOM is a list of software components used in a product
▪ Concepts borrowed from discrete manufacturing
▪ The list is typically a hierarchy (“graph”)
▪ What is a software component? There is no standard terminology!
▪ A component may be a file (source or binary) or a package of files
▪ A package may be an archive with or without metadata

o Many possible SBOM use cases
▪ Packaged software
▪ Software deployed on a device
▪ Software deployed on the Cloud
▪ The Customer/recipient of an SBOM may be anywhere in the supply chain
▪ Anyone who distributes software in any way will need to produce SBOMs

5

Copyright nexB Inc.

Why SBOMs

o An SBOM is a prerequisite for managing license and

vulnerability risks from third-party software

o And for sharing that information across your supply chain

o Automation is essential to cope with the rapid and continuing

increase in the volume of FOSS packages

o The entry point for managing these risks is agreeing

somehow on the identification of the software units across a

supply chain

6

Copyright nexB Inc.

Why SBOMs [2]

o Providing an SBOM with your software is now a requirement

for doing business with US government agencies
▪ The Cyber Supply Chain Management and Transparency Act of 2014 focused

on vulnerabilities
▪ The May 2021 Executive Order on Improving the Nation’s Cybersecurity

added the broader concept of software supply chain
▪ CISA* currently has five weekly meetings on the topic!

o Modern software contains third-party software - FOSS or

Proprietary - with potential licensing and vulnerability risks

o A better question: Why haven’t we been using SBOMs

before?

* CISA: Cybersecurity and Infrastructure Security Agency within DHS

7

https://www.congress.gov/bill/113th-congress/house-bill/5793
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Copyright nexB Inc.

SBOM Standards

Two emerging standards for an SBOM:

1. CycloneDX - https://cyclonedx.org/ - from OWASP

2. SPDX - https://spdx.dev/ - from the Linux Foundation
■ One weaker candidate: SWID - https://csrc.nist.gov/projects/Software-Identification-

SWID

o Unlikely that there will be only one standard…

o And possible that there will be more than two.

o Remember: These are standards for data exchange, not

design standards for any particular software system

8

https://cyclonedx.org/
https://spdx.dev/
https://csrc.nist.gov/projects/Software-Identification-SWID

Copyright nexB Inc.

SBOM Standards [2]

o Other standards will be required like Package URL to reliably

identify a unit of software: https://github.com/package-url/purl-

spec

o Waiting for a complete and final specification is not a realistic

option
▪ Best approach is to get started now
▪ With an expectation that standards and tools will change
▪ Just like the rest of the software domain

9

https://github.com/package-url/purl-spec

Copyright nexB Inc.

SBOMs for Software Supply Chain Security

o Software organizations can learn a lot from manufacturing

best practices

o Each organization in a supply chain is responsible for

knowing the origin and quality of the materials included in a

product at their stage of production

o This requires knowing and sharing information in the format

of SBOMs which means standardizing data and

learning to translate among multiple standards

10

Copyright nexB Inc.

Software Composition Analysis

SCA is a set of processes and tools that cover:

o Identification – Identify distinct “units” of third-party software

used in a product or project and their provenance

o Licensing – Determine the licensing for each software unit

o Security – Identify known security vulnerabilities for each

software unit

o Quality – Evaluate the quality of a software unit based on

software development data, such as number of bugs, fixes,

etc.

Read SCA the FOSS Way for more information
11

https://www.nexb.com/software-composition-analysis/

Copyright nexB Inc.

Software Composition Analysis [2]

o Overall SCA needs to be a core competency for ay software

development organization

o Embed in the software development workflow from design

through release - as it is in manufacturing

o The choice of SCA tools will depend on your platform, stack

and product

12

Copyright nexB Inc.

SCA Tools

o Primary focus of SCA tools has been on security

vulnerabilities because of the perceived higher risk

o Most SCA tools focus on either vulnerabilities OR licensing

o Vulnerabilities and licenses seem like oil and water
▪ The communities of interest are separate - security vs legal
▪ License data may be complex, but generally stable over time
▪ Vulnerability data is also complex, but extremely dynamic - if included directly

in an SBOM, it may be wrong by the time you receive an SBOM

o But you need SCA coverage for both - plus quality

13

Copyright nexB Inc.

SCA Tools [2]

o Most current tools are proprietary and increasingly expensive

with the surge of interest in SBOMs
▪ Trend seems to be charging based on the total number of

developers in your organization
▪ Good for the vendor - not for the customer

o Proprietary solutions may work for large companies, but they

will not work across the FOSS supply chain
▪ Proprietary data about FOSS vulnerabilities is particularly

problematic as a barrier to community access and analysis

14

Copyright nexB Inc.

FOSS tools for SCA

o Modular tools for developers:
▪ Free and open source software (Apache 2.0)
▪ Free and open data (CC-BY-SA)

o ScanCode: Leading code scanner

o VulnerableCode: New tools and database for aggregating

vulnerability data from across the FOSS supply chain

o PurlDB: New tools and database for aggregating package

data across the FOSS supply chain

o DejaCode: SCA management application

15

Copyright nexB Inc.

DejaCode
Policies Licenses

Components

Packages

Vulnerabilities

FOSS tools for Software Supply Chain Security

SBOM

PurlDB VulnerabilityDB

ScanCode.io
Software

Product

FOSS

Package

SBOM

Scans

LicenseDB

ScanCode Toolkit

package

inspectors

Attribution

container

inspector

16

Copyright nexB Inc.

DejaCode

▷ Compliance application / system of record for:
○ Managing Inventory and BOM data
○ Defining and applying license policies
○ Identifying and addressing package vulnerabilities
○ Generating FOSS compliance documents such as Product

Attribution Notices and SBOMs

▷ Built-in integration with ScanCode.io, VulnerableCode.io and

PurlDB

▷ SaaS or on-premises

▷ See https://nexb.com/dejacode/

17

https://nexb.com/dejacode/

Copyright nexB Inc.

ScanCode

▷ Identify FOSS and other third-party components & packages
▷ Detect licenses, copyrights and dependencies
▷ ScanCode Projects include:

○ ScanCode.io: Server system with customizable pipelines and UI
○ ScanCode Toolkit: Scanning engine - use it in SCIO or as a

separate CLI or library
○ LicenseDB: 2000+ licenses recognized by ScanCode
○ ScanCode Workbench: Desktop app to review Toolkit Scans
○ scancode-analyzer: Analyze and improve license detection accuracy

▷ See https://nexb.com/scancode/ for more information

18

https://nexb.com/scancode/

Copyright nexB Inc.

VulnerableCode

▷ Collect and aggregate vulnerability data from many public sources
○ Projects, GitHub, Linux Distros, NVD, Package managers and more
○ Focus on upstream projects (source of the source)

▷ Apply confidence based system: not all data are equally trusted and of
equivalent quality

▷ Discover relations (and inconsistencies) between vulnerabilities and
packages from mining the graph

▷ Public VulnerableCode database is available at:
https://public.vulnerablecode.io/
▷ Also tools to build your own database
▷ Working on data sharing and curation

▷ See https://nexb.com/vulnerablecode/ for more information

19

https://public.vulnerablecode.io/
https://nexb.com/vulnerablecode/

Copyright nexB Inc.

PurlDB

▷ Collect and aggregate package metadata from many public sources
○ Package manager repositories
○ GitHub, GitLab and other source repositories
○ Linux distros
○ Focus on upstream projects (source of the source)

▷ Will support package matching as a complement to scanning
▷ Also tools to build your own database
▷ See https://github.com/nexB/purldb/ for more information

20

https://nexb.com/purldb/

Copyright nexB Inc.

Other AboutCode projects

▷ container-inspector: Analyze Docker and other images
▷ debian-inspector: Parse Debian copyright files
▷ nuget-inspector: Resolve C# dependencies
▷ python-inspector: Resolve Python dependencies
▷ aboutcode-toolkit: Generate Attribution Notices
▷ package-url (purl): URL string to identify and locate a software

package across programing languages, package managers, packaging
conventions, tools, APIs and databases.
○ Adopted by ORT, CycloneDX and many other major projects
○ See also https://github.com/package-url

○ univers: parse and compare package versions and version ranges
○ See https://github.com/nexB for the complete list of projects

21

https://github.com/package-url
https://github.com/nexB

Copyright nexB Inc.

Contact us

▷ Contacts
○ Michael Herzog

mjherzog@nexb.com

○ Philippe Ombredanne
pombredanne@nexb.com

○ Dennis Clark

dmclark@nexb.com

▷ More information - https://www.nexb.com/

22

mailto:mjherzog@nexb.com
mailto:pombredanne@nexb.com
mailto:dmclark@nexb.com
http://www.nexb.com/

